

btcd

[image: _images/btcd.png]Build Status [https://travis-ci.org/btcsuite/btcd]
[image: _images/license-ISC-blue.svg]ISC License [http://copyfree.org]
[image: _images/godoc-reference-blue.svg]GoDoc [http://godoc.org/github.com/btcsuite/btcd]

btcd is an alternative full node bitcoin implementation written in Go (golang).

This project is currently under active development and is in a Beta state. It
is extremely stable and has been in production use since October 2013.

It properly downloads, validates, and serves the block chain using the exact
rules (including consensus bugs) for block acceptance as Bitcoin Core. We have
taken great care to avoid btcd causing a fork to the block chain. It includes a
full block validation testing framework which contains all of the ‘official’
block acceptance tests (and some additional ones) that is run on every pull
request to help ensure it properly follows consensus. Also, it passes all of
the JSON test data in the Bitcoin Core code.

It also properly relays newly mined blocks, maintains a transaction pool, and
relays individual transactions that have not yet made it into a block. It
ensures all individual transactions admitted to the pool follow the rules
required by the block chain and also includes more strict checks which filter
transactions based on miner requirements (“standard” transactions).

One key difference between btcd and Bitcoin Core is that btcd does NOT include
wallet functionality and this was a very intentional design decision. See the
blog entry here [https://web.archive.org/web/20171125143919/https://blog.conformal.com/btcd-not-your-moms-bitcoin-daemon]
for more details. This means you can’t actually make or receive payments
directly with btcd. That functionality is provided by the
btcwallet [https://github.com/btcsuite/btcwallet] and
Paymetheus [https://github.com/btcsuite/Paymetheus] (Windows-only) projects
which are both under active development.

Documentation

Documentation is a work-in-progress. It is available at btcd.readthedocs.io [https://btcd.readthedocs.io/en/docu/].

Contents

	Installation

	Update

	Configuration

	Configuring TOR

	Docker

	Controlling

	Mining

	Wallet

	Developer resources

	JSON RPC API

	Code contribution guidelines

	Contact

License

btcd is licensed under the copyfree [http://copyfree.org] ISC License.

Installation

The first step is to install btcd. See one of the following sections for
details on how to install on the supported operating systems.

Requirements

Go [http://golang.org] 1.11 or newer.

GPG Verification Key

All official release tags are signed by Conformal so users can ensure the code
has not been tampered with and is coming from the btcsuite developers. To
verify the signature perform the following:

	Download the Conformal public key:
https://raw.githubusercontent.com/btcsuite/btcd/master/release/GIT-GPG-KEY-conformal.txt

	Import the public key into your GPG keyring:

gpg --import GIT-GPG-KEY-conformal.txt

	Verify the release tag with the following command where TAG_NAME is a
placeholder for the specific tag:

git tag -v TAG_NAME

Windows Installation

	Install the MSI available at: btcd windows installer [https://github.com/btcsuite/btcd/releases]

	Launch btcd from the Start Menu

Linux/BSD/MacOSX/POSIX Installation

	Install Go according to the installation instructions [http://golang.org/doc/install]

	Ensure Go was installed properly and is a supported version:

go version
go env GOROOT GOPATH

NOTE: The GOROOT and GOPATH above must not be the same path. It is
recommended that GOPATH is set to a directory in your home directory such as
~/goprojects to avoid write permission issues. It is also recommended to add
$GOPATH/bin to your PATH at this point.

	Run the following commands to obtain btcd, all dependencies, and install it:

git clone https://github.com/btcsuite/btcd $GOPATH/src/github.com/btcsuite/btcd
cd $GOPATH/src/github.com/btcsuite/btcd
GO111MODULE=on go install -v . ./cmd/...

	btcd (and utilities) will now be installed in $GOPATH/bin. If you did
not already add the bin directory to your system path during Go installation,
we recommend you do so now.

Gentoo Linux Installation

	Install Layman [https://gitlab.com/bitcoin/gentoo] and enable the Bitcoin overlay.

	Copy or symlink /var/lib/layman/bitcoin/Documentation/package.keywords/btcd-live to /etc/portage/package.keywords/

	Install btcd: $ emerge net-p2p/btcd

Startup

Typically btcd will run and start downloading the block chain with no extra
configuration necessary, however, there is an optional method to use a
bootstrap.dat file that may speed up the initial block chain download process.

	Using bootstrap.dat [https://github.com/btcsuite/btcd/tree/master/docs/using_bootstrap_dat]

Update

	Run the following commands to update btcd, all dependencies, and install it:

cd $GOPATH/src/github.com/btcsuite/btcd
git pull && GO111MODULE=on go install -v . ./cmd/...

Configuration

btcd has a number of configuration [http://godoc.org/github.com/btcsuite/btcd]
options, which can be viewed by running: $ btcd --help.

Peer server listen interface

btcd allows you to bind to specific interfaces which enables you to setup
configurations with varying levels of complexity. The listen parameter can be
specified on the command line as shown below with the – prefix or in the
configuration file without the – prefix (as can all long command line options).
The configuration file takes one entry per line.

NOTE: The listen flag can be specified multiple times to listen on multiple
interfaces as a couple of the examples below illustrate.

Command Line Examples:

	Flags
	Comment

	--listen=
	all interfaces on default port which is changed by --testnet and --regtest (default)

	--listen=0.0.0.0
	all IPv4 interfaces on default port which is changed by --testnet and --regtest

	--listen=::
	all IPv6 interfaces on default port which is changed by --testnet and --regtest

	--listen=:8333
	all interfaces on port 8333

	--listen=0.0.0.0:8333
	all IPv4 interfaces on port 8333

	--listen=[::]:8333
	all IPv6 interfaces on port 8333

	--listen=127.0.0.1:8333
	only IPv4 localhost on port 8333

	--listen=[::1]:8333
	only IPv6 localhost on port 8333

	--listen=:8336
	all interfaces on non-standard port 8336

	--listen=0.0.0.0:8336
	all IPv4 interfaces on non-standard port 8336

	--listen=[::]:8336
	all IPv6 interfaces on non-standard port 8336

	--listen=127.0.0.1:8337 --listen=[::1]:8333
	IPv4 localhost on port 8337 and IPv6 localhost on port 8333

	--listen=:8333 --listen=:8337
	all interfaces on ports 8333 and 8337

The following config file would configure btcd to only listen on localhost for both IPv4 and IPv6:

[Application Options]

listen=127.0.0.1:8333
listen=[::1]:8333

In addition, if you are starting btcd with TLS and want to make it
available via a hostname, then you will need to generate the TLS
certificates for that host. For example,

gencerts --host=myhostname.example.com --directory=/home/me/.btcd/

RPC server listen interface

btcd allows you to bind the RPC server to specific interfaces which enables you
to setup configurations with varying levels of complexity. The rpclisten
parameter can be specified on the command line as shown below with the – prefix
or in the configuration file without the – prefix (as can all long command line
options). The configuration file takes one entry per line.

A few things to note regarding the RPC server:

	The RPC server will not be enabled unless the rpcuser and rpcpass
options are specified.

	When the rpcuser and rpcpass and/or rpclimituser and rpclimitpass
options are specified, the RPC server will only listen on localhost IPv4 and
IPv6 interfaces by default. You will need to override the RPC listen
interfaces to include external interfaces if you want to connect from a remote
machine.

	The RPC server has TLS enabled by default, even for localhost. You may use
the --notls option to disable it, but only when all listeners are on
localhost interfaces.

	The --rpclisten flag can be specified multiple times to listen on multiple
interfaces as a couple of the examples below illustrate.

	The RPC server is disabled by default when using the --regtest and
--simnet networks. You can override this by specifying listen interfaces.

Command Line Examples:

	Flags
	Comment

	--rpclisten=
	all interfaces on default port which is changed by --testnet

	--rpclisten=0.0.0.0
	all IPv4 interfaces on default port which is changed by --testnet

	--rpclisten=::
	all IPv6 interfaces on default port which is changed by --testnet

	--rpclisten=:8334
	all interfaces on port 8334

	--rpclisten=0.0.0.0:8334
	all IPv4 interfaces on port 8334

	--rpclisten=[::]:8334
	all IPv6 interfaces on port 8334

	--rpclisten=127.0.0.1:8334
	only IPv4 localhost on port 8334

	--rpclisten=[::1]:8334
	only IPv6 localhost on port 8334

	--rpclisten=:8336
	all interfaces on non-standard port 8336

	--rpclisten=0.0.0.0:8336
	all IPv4 interfaces on non-standard port 8336

	--rpclisten=[::]:8336
	all IPv6 interfaces on non-standard port 8336

	--rpclisten=127.0.0.1:8337 --listen=[::1]:8334
	IPv4 localhost on port 8337 and IPv6 localhost on port 8334

	--rpclisten=:8334 --listen=:8337
	all interfaces on ports 8334 and 8337

The following config file would configure the btcd RPC server to listen to all interfaces on the default port, including external interfaces, for both IPv4 and IPv6:

[Application Options]

rpclisten=

Default ports

While btcd is highly configurable when it comes to the network configuration,
the following is intended to be a quick reference for the default ports used so
port forwarding can be configured as required.

btcd provides a --upnp flag which can be used to automatically map the bitcoin
peer-to-peer listening port if your router supports UPnP. If your router does
not support UPnP, or you don’t wish to use it, please note that only the bitcoin
peer-to-peer port should be forwarded unless you specifically want to allow RPC
access to your btcd from external sources such as in more advanced network
configurations.

	Name
	Port

	Default Bitcoin peer-to-peer port
	TCP 8333

	Default RPC port
	TCP 8334

Using bootstrap.dat

What is bootstrap.dat?

It is a flat, binary file containing bitcoin blockchain data starting from the
genesis block and continuing through a relatively recent block height depending
on the last time it was updated.

See this [https://bitcointalk.org/index.php?topic=145386.0] thread on
bitcointalk for more details.

NOTE: Using bootstrap.dat is entirely optional. Btcd will download the
block chain from other peers through the Bitcoin protocol with no extra
configuration needed.

What are the pros and cons of using bootstrap.dat?

Pros:

	Typically accelerates the initial process of bringing up a new node as it
downloads from public P2P nodes and generally is able to achieve faster
download speeds

	It is particularly beneficial when bringing up multiple nodes as you only need
to download the data once

Cons:

	Requires you to setup and configure a torrent client if you don’t already have
one available

	Requires roughly twice as much disk space since you’ll need the flat file as
well as the imported database

Where do I get bootstrap.dat?

The bootstrap.dat file is made available via a torrent. See
this [https://bitcointalk.org/index.php?topic=145386.0] thread on bitcointalk
for the torrent download details.

How do I know I can trust the bootstrap.dat I downloaded?

You don’t need to trust the file as the addblock utility verifies every block
using the same rules that are used when downloading the block chain normally
through the Bitcoin protocol. Additionally, the chain rules contain hard-coded
checkpoints for the known-good block chain at periodic intervals. This ensures
that not only is it a valid chain, but it is the same chain that everyone else
is using.

How do I use bootstrap.dat with btcd?

btcd comes with a separate utility named addblock which can be used to import
bootstrap.dat. This approach is used since the import is a one-time operation
and we prefer to keep the daemon itself as lightweight as possible.

	Stop btcd if it is already running. This is required since addblock needs to
access the database used by btcd and it will be locked if btcd is using it.

	Note the path to the downloaded bootstrap.dat file.

	Run the addblock utility with the -i argument pointing to the location of
boostrap.dat:

Windows:

"%PROGRAMFILES%\Btcd Suite\Btcd\addblock" -i C:\Path\To\bootstrap.dat

Linux/Unix/BSD/POSIX:

$GOPATH/bin/addblock -i /path/to/bootstrap.dat

Configuring TOR

btcd provides full support for anonymous networking via the
Tor Project [https://www.torproject.org/], including client-only
and hidden service configurations along with
stream isolation. In addition, btcd supports a hybrid,
bridge mode which is not anonymous, but allows it to operate as a
bridge between regular nodes and hidden service nodes without routing the
regular connections through Tor.

While it is easier to only run as a client, it is more beneficial to the Bitcoin
network to run as both a client and a server so others may connect to you to as
you are connecting to them. We recommend you take the time to setup a Tor
hidden service for this reason.

Client-only

Configuring btcd as a Tor client is straightforward. The first step is
obviously to install Tor and ensure it is working. Once that is done, all that
typically needs to be done is to specify the --proxy flag via the btcd command
line or in the btcd configuration file. Typically the Tor proxy address will be
127.0.0.1:9050 (if using standalone Tor) or 127.0.0.1:9150 (if using the Tor
Browser Bundle). If you have Tor configured to require a username and password,
you may specify them with the --proxyuser and --proxypass flags.

By default, btcd assumes the proxy specified with --proxy is a Tor proxy and
hence will send all traffic, including DNS resolution requests, via the
specified proxy.

NOTE: Specifying the --proxy flag disables listening by default since you will
not be reachable for inbound connections unless you also configure a Tor
hidden service.

Command line example

./btcd --proxy=127.0.0.1:9050

Config file example

[Application Options]

proxy=127.0.0.1:9050

Client-server via Tor hidden service

The first step is to configure Tor to provide a hidden service. Documentation
for this can be found on the Tor project website
here [https://www.torproject.org/docs/tor-hidden-service.html.en]. However,
there is no need to install a web server locally as the linked instructions
discuss since btcd will act as the server.

In short, the instructions linked above entail modifying your torrc file to
add something similar to the following, restarting Tor, and opening the
hostname file in the HiddenServiceDir to obtain your hidden service .onion
address.

HiddenServiceDir /var/tor/btcd
HiddenServicePort 8333 127.0.0.1:8333

Once Tor is configured to provide the hidden service and you have obtained your
generated .onion address, configuring btcd as a Tor hidden service requires
three flags:

	--proxy to identify the Tor (SOCKS 5) proxy to use for outgoing traffic.
This is typically 127.0.0.1:9050.

	--listen to enable listening for inbound connections since --proxy
disables listening by default

	--externalip to set the .onion address that is advertised to other peers

Command line example

./btcd --proxy=127.0.0.1:9050 --listen=127.0.0.1 --externalip=fooanon.onion

Config file example

[Application Options]

proxy=127.0.0.1:9050
listen=127.0.0.1
externalip=fooanon.onion

Bridge mode (not anonymous)

btcd provides support for operating as a bridge between regular nodes and hidden
service nodes. In particular this means only traffic which is directed to or
from a .onion address is sent through Tor while other traffic is sent normally.
As a result, this mode is NOT anonymous.

This mode works by specifying an onion-specific proxy, which is pointed at Tor,
by using the --onion flag via the btcd command line or in the btcd
configuration file. If you have Tor configured to require a username and
password, you may specify them with the --onionuser and --onionpass flags.

NOTE: This mode will also work in conjunction with a hidden service which means
you could accept inbound connections both via the normal network and to your
hidden service through the Tor network. To enable your hidden service in bridge
mode, you only need to specify your hidden service’s .onion address via the
--externalip flag since traffic to and from .onion addresses are already
routed via Tor due to the --onion flag.

Command line example

./btcd --onion=127.0.0.1:9050 --externalip=fooanon.onion

Config file example

[Application Options]

onion=127.0.0.1:9050
externalip=fooanon.onion

Tor stream isolation

Tor stream isolation forces Tor to build a new circuit for each connection
making it harder to correlate connections.

btcd provides support for Tor stream isolation by using the --torisolation
flag. This option requires –proxy or –onionproxy to be set.

Command line example

./btcd --proxy=127.0.0.1:9050 --torisolation

Config file example

[Application Options]

proxy=127.0.0.1:9050
torisolation=1

Using Docker

	Using Docker

	Introduction

	Docker volumes

	Known error messages when starting the btcd container

	Examples

	Preamble

	Full node without RPC port

	Full node with RPC port

	Full node with RPC port running on TESTNET

Introduction

With Docker you can easily set up btcd to run your Bitcoin full node. You can find the official btcd Docker images on Docker Hub btcsuite/btcd [https://hub.docker.com/r/btcsuite/btcd]. The Docker source file of this image is located at Dockerfile [https://github.com/btcsuite/btcd/blob/master/Dockerfile].

This documentation focuses on running Docker container with docker-compose.yml files. These files are better to read and you can use them as a template for your own use. For more information about Docker and Docker compose visit the official Docker documentation [https://docs.docker.com/].

Docker volumes

Special diskspace hint: The following examples are using a Docker managed volume. The volume is named btcd-data This will use a lot of disk space, because it contains the full Bitcoin blockchain. Please make yourself familiar with Docker volumes [https://docs.docker.com/storage/volumes/].

The btcd-data volume will be reused, if you upgrade your docker-compose.yml file. Keep in mind, that it is not automatically removed by Docker, if you delete the btcd container. If you don’t need the volume anymore, please delete it manually with the command:

docker volume ls
docker volume rm btcd-data

For binding a local folder to your btcd container please read the Docker documentation [https://docs.docker.com/]. The preferred way is to use a Docker managed volume.

Known error messages when starting the btcd container

We pass all needed arguments to btcd as command line parameters in our docker-compose.yml file. It doesn’t make sense to create a btcd.conf file. This would make things too complicated. Anyhow btcd will complain with following log messages when starting. These messages can be ignored:

Error creating a default config file: open /sample-btcd.conf: no such file or directory
...
[WRN] BTCD: open /root/.btcd/btcd.conf: no such file or directory

Examples

Preamble

All following examples uses some defaults:

	container_name: btcd
Name of the docker container that is be shown by e.g. docker ps -a

	hostname: btcd (very important to set a fixed name before first start)
The internal hostname in the docker container. By default, docker is recreating the hostname every time you change the docker-compose.yml file. The default hostnames look like ef00548d4fa5. This is a problem when using the btcd RPC port. The RPC port is using a certificate to validate the hostname. If the hostname changes you need to recreate the certificate. To avoid this, you should set a fixed hostname before the first start. This ensures, that the docker volume is created with a certificate with this hostname.

	restart: unless-stopped
Starts the btcd container when Docker starts, except that when the container is stopped (manually or otherwise), it is not restarted even after Docker restarts.

To use the following examples create an empty directory. In this directory create a file named docker-compose.yml, copy and paste the example into the docker-compose.yml file and run it.

mkdir ~/btcd-docker
cd ~/btcd-docker
touch docker-compose.yaml
nano docker-compose.yaml (use your favourite editor to edit the compose file)
docker-compose up (creates and starts a new btcd container)

With the following commands you can control docker-compose:

docker-compose up -d (creates and starts the container in background)

docker-compose down (stops and delete the container. The docker volume btcd-data will not be deleted)

docker-compose stop (stops the container)

docker-compose start (starts the container)

docker ps -a (list all running and stopped container)

docker volume ls (lists all docker volumes)

docker logs btcd (shows the log)

docker-compose help (brings up some helpful information)

Full node without RPC port

Let’s start with an easy example. If you just want to create a full node without the need of using the RPC port, you can use the following example. This example will launch btcd and exposes only the default p2p port 8333 to the outside world:

version: "2"

services:
 btcd:
 container_name: btcd
 hostname: btcd
 image: btcsuite/btcd:latest
 restart: unless-stopped
 volumes:
 - btcd-data:/root/.btcd
 ports:
 - 8333:8333

volumes:
 btcd-data:

Full node with RPC port

To use the RPC port of btcd you need to specify a username and a very strong password. If you want to connect to the RPC port from the internet, you need to expose port 8334(RPC) as well.

version: "2"

services:
 btcd:
 container_name: btcd
 hostname: btcd
 image: btcsuite/btcd:latest
 restart: unless-stopped
 volumes:
 - btcd-data:/root/.btcd
 ports:
 - 8333:8333
 - 8334:8334
 command: [
 "--rpcuser=[CHOOSE_A_USERNAME]",
 "--rpcpass=[CREATE_A_VERY_HARD_PASSWORD]"
]

volumes:
 btcd-data:

Full node with RPC port running on TESTNET

To run a node on testnet, you need to provide the –testnet argument. The ports for testnet are 18333 (p2p) and 18334 (RPC):

version: "2"

services:
 btcd:
 container_name: btcd
 hostname: btcd
 image: btcsuite/btcd:latest
 restart: unless-stopped
 volumes:
 - btcd-data:/root/.btcd
 ports:
 - 18333:18333
 - 18334:18334
 command: [
 "--testnet",
 "--rpcuser=[CHOOSE_A_USERNAME]",
 "--rpcpass=[CREATE_A_VERY_HARD_PASSWORD]"
]

volumes:
 btcd-data:

Controlling and querying btcd via btcctl

btcctl is a command line utility that can be used to both control and query btcd
via RPC [http://www.wikipedia.org/wiki/Remote_procedure_call]. btcd does
not enable its RPC server by default; You must configure at minimum both an
RPC username and password or both an RPC limited username and password:

	btcd.conf configuration file

[Application Options]
rpcuser=myuser
rpcpass=SomeDecentp4ssw0rd
rpclimituser=mylimituser
rpclimitpass=Limitedp4ssw0rd

	btcctl.conf configuration file

[Application Options]
rpcuser=myuser
rpcpass=SomeDecentp4ssw0rd

OR

[Application Options]
rpclimituser=mylimituser
rpclimitpass=Limitedp4ssw0rd

For a list of available options, run: $ btcctl --help

Mining

btcd supports the getblocktemplate RPC.
The limited user cannot access this RPC.

Add the payment addresses with the miningaddr option

[Application Options]
rpcuser=myuser
rpcpass=SomeDecentp4ssw0rd
miningaddr=12c6DSiU4Rq3P4ZxziKxzrL5LmMBrzjrJX
miningaddr=1M83ju3EChKYyysmM2FXtLNftbacagd8FR

Add btcd’s RPC TLS certificate to system Certificate Authority list

cgminer uses curl [http://curl.haxx.se/] to fetch data from the RPC server.
Since curl validates the certificate by default, we must install the btcd RPC
certificate into the default system Certificate Authority list.

Ubuntu

	Copy rpc.cert to /usr/share/ca-certificates: # cp /home/user/.btcd/rpc.cert /usr/share/ca-certificates/btcd.crt

	Add btcd.crt to /etc/ca-certificates.conf: # echo btcd.crt >> /etc/ca-certificates.conf

	Update the CA certificate list: # update-ca-certificates

Set your mining software url to use https

cgminer -o https://127.0.0.1:8334 -u rpcuser -p rpcpassword

Wallet

btcd was intentionally developed without an integrated wallet for security
reasons. Please see btcwallet [https://github.com/btcsuite/btcwallet] for more
information.

Developer Resources

	Code Contribution Guidelines [https://github.com/btcsuite/btcd/tree/master/docs/code_contribution_guidelines]

	JSON-RPC Reference [https://github.com/btcsuite/btcd/tree/master/docs/json_rpc_api]

	RPC Examples [https://github.com/btcsuite/btcd/tree/master/docs/json_rpc_api.md#ExampleCode]

	The btcsuite Bitcoin-related Go Packages:

	btcrpcclient [https://github.com/btcsuite/btcd/tree/master/rpcclient] - Implements a
robust and easy to use Websocket-enabled Bitcoin JSON-RPC client

	btcjson [https://github.com/btcsuite/btcd/tree/master/btcjson] - Provides an extensive API
for the underlying JSON-RPC command and return values

	wire [https://github.com/btcsuite/btcd/tree/master/wire] - Implements the
Bitcoin wire protocol

	peer [https://github.com/btcsuite/btcd/tree/master/peer] -
Provides a common base for creating and managing Bitcoin network peers.

	blockchain [https://github.com/btcsuite/btcd/tree/master/blockchain] -
Implements Bitcoin block handling and chain selection rules

	blockchain/fullblocktests [https://github.com/btcsuite/btcd/tree/master/blockchain/fullblocktests] -
Provides a set of block tests for testing the consensus validation rules

	txscript [https://github.com/btcsuite/btcd/tree/master/txscript] -
Implements the Bitcoin transaction scripting language

	btcec [https://github.com/btcsuite/btcd/tree/master/btcec] - Implements
support for the elliptic curve cryptographic functions needed for the
Bitcoin scripts

	database [https://github.com/btcsuite/btcd/tree/master/database] -
Provides a database interface for the Bitcoin block chain

	mempool [https://github.com/btcsuite/btcd/tree/master/mempool] -
Package mempool provides a policy-enforced pool of unmined bitcoin
transactions.

	btcutil [https://github.com/btcsuite/btcutil] - Provides Bitcoin-specific
convenience functions and types

	chainhash [https://github.com/btcsuite/btcd/tree/master/chaincfg/chainhash] -
Provides a generic hash type and associated functions that allows the
specific hash algorithm to be abstracted.

	connmgr [https://github.com/btcsuite/btcd/tree/master/connmgr] -
Package connmgr implements a generic Bitcoin network connection manager.

JSON RPC API

	Overview

	HTTP POST Versus Websockets

	Authentication

3.1. Overview

3.2. HTTP Basic Access Authentication

3.3. JSON-RPC Authenticate Command (Websocket-specific)

	Command-line Utility

	Standard Methods

5.1. Method Overview

5.2. Method Details

	Extension Methods

6.1. Method Overview

6.2. Method Details

	Websocket Extension Methods (Websocket-specific)

7.1. Method Overview

7.2. Method Details

	Notifications (Websocket-specific)

8.1. Notification Overview

8.2. Notification Details

	Example Code

9.1. Go

9.2. node.js

[bookmark: Overview]
1. Overview

btcd provides a JSON-RPC [http://json-rpc.org/wiki/specification] API that is
fully compatible with the original bitcoind/bitcoin-qt. There are a few key
differences between btcd and bitcoind as far as how RPCs are serviced:

	Unlike bitcoind that has the wallet and chain intermingled in the same process
which leads to several issues, btcd intentionally splits the wallet and chain
services into independent processes. See the blog post
here [https://blog.conformal.com/btcd-not-your-moms-bitcoin-daemon/] for
further details on why they were separated. This means that if you are
talking directly to btcd, only chain-related RPCs are available. However both
chain-related and wallet-related RPCs are available via
btcwallet [https://github.com/btcsuite/btcwallet].

	btcd is secure by default which means that the RPC connection is TLS-enabled
by default

	btcd provides access to the API through both
HTTP POST [http://en.wikipedia.org/wiki/POST_%28HTTP%29] requests and
Websockets [http://en.wikipedia.org/wiki/WebSocket]

Websockets are the preferred transport for btcd RPC and are used by applications
such as btcwallet [https://github.com/btcsuite/btcwallet] for inter-process
communication with btcd. The websocket connection endpoint for btcd is
wss://your_ip_or_domain:8334/ws.

In addition to the standard API, an extension API
has been developed that is exclusive to clients using Websockets. In its current
state, this API attempts to cover features found missing in the standard API
during the development of btcwallet.

While the standard API is stable, the
Websocket extension API should be considered a work in
progress, incomplete, and susceptible to changes (both additions and removals).

The original bitcoind/bitcoin-qt JSON-RPC API documentation is available at https://en.bitcoin.it/wiki/Original_Bitcoin_client/API_Calls_list

[bookmark: HttpPostVsWebsockets]

2. HTTP POST Versus Websockets

The btcd RPC server supports both HTTP POST [http://en.wikipedia.org/wiki/POST_%28HTTP%29]
requests and the preferred Websockets [http://en.wikipedia.org/wiki/WebSocket].
All of the standard and extension methods
described in this documentation can be accessed through both. As the name
indicates, the Websocket-specific extension methods can only be
accessed when connected via Websockets.

As mentioned in the overview, the websocket connection endpoint for
btcd is wss://your_ip_or_domain:8334/ws.

The most important differences between the two transports as it pertains to the
JSON-RPC API are:

	
	HTTP POST Requests
	Websockets

	Allows multiple requests across a single connection
	No
	Yes

	Supports asynchronous notifications
	No
	Yes

	Scales well with large numbers of requests
	No
	Yes

[bookmark: Authentication]

3. Authentication

[bookmark: AuthenticationOverview]3.1 Authentication Overview

The following authentication details are needed before establishing a connection
to a btcd RPC server:

	rpcuser is the full-access username configured for the btcd RPC server

	rpcpass is the full-access password configured for the btcd RPC server

	rpclimituser is the limited username configured for the btcd RPC server

	rpclimitpass is the limited password configured for the btcd RPC server

	rpccert is the PEM-encoded X.509 certificate (public key) that the btcd
server is configured with. It is automatically generated by btcd and placed
in the btcd home directory (which is typically %LOCALAPPDATA%\Btcd on
Windows and ~/.btcd on POSIX-like OSes)

NOTE: As mentioned above, btcd is secure by default which means the RPC
server is not running unless configured with a rpcuser and rpcpass
and/or a rpclimituser and rpclimitpass, and uses TLS authentication for
all connections.

Depending on which connection transaction you are using, you can choose one of
two, mutually exclusive, methods.

	Use HTTP Authorization Header - HTTP POST requests and Websockets

	Use the JSON-RPC “authenticate” command - Websockets only

[bookmark: HTTPAuth]3.2 HTTP Basic Access Authentication

The btcd RPC server uses HTTP basic access authentication [http://en.wikipedia.org/wiki/Basic_access_authentication] with the rpcuser
and rpcpass detailed above. If the supplied credentials are invalid, you
will be disconnected immediately upon making the connection.

[bookmark: JSONAuth]3.3 JSON-RPC Authenticate Command (Websocket-specific)

While the HTTP basic access authentication method is the preferred method, the
ability to set HTTP headers from websockets is not always available. In that
case, you will need to use the authenticate JSON-RPC method.

The authenticate command must be the first command sent after
connecting to the websocket. Sending any other commands before authenticating,
supplying invalid credentials, or attempting to authenticate again when already
authenticated will cause the websocket to be closed immediately.

[bookmark: CLIUtil]

4. Command-line Utility

btcd comes with a separate utility named btcctl which can be used to issue
these RPC commands via HTTP POST requests to btcd after configuring it with the
information in the Authentication section above. It can also
be used to communicate with any server/daemon/service which provides a JSON-RPC
API compatible with the original bitcoind/bitcoin-qt client.

[bookmark: Methods]

5. Standard Methods

[bookmark: MethodOverview]5.1 Method Overview

The following is an overview of the RPC methods and their current status. Click
the method name for further details such as parameter and return information.

	#
	Method
	Safe for limited user?
	Description

	1
	addnode
	N
	Attempts to add or remove a persistent peer.

	2
	createrawtransaction
	Y
	Returns a new transaction spending the provided inputs and sending to the provided addresses.

	3
	decoderawtransaction
	Y
	Returns a JSON object representing the provided serialized, hex-encoded transaction.

	4
	decodescript
	Y
	Returns a JSON object with information about the provided hex-encoded script.

	5
	getaddednodeinfo
	N
	Returns information about manually added (persistent) peers.

	6
	getbestblockhash
	Y
	Returns the hash of the of the best (most recent) block in the longest block chain.

	7
	getblock
	Y
	Returns information about a block given its hash.

	8
	getblockcount
	Y
	Returns the number of blocks in the longest block chain.

	9
	getblockhash
	Y
	Returns hash of the block in best block chain at the given height.

	10
	getblockheader
	Y
	Returns the block header of the block.

	11
	getconnectioncount
	N
	Returns the number of active connections to other peers.

	12
	getdifficulty
	Y
	Returns the proof-of-work difficulty as a multiple of the minimum difficulty.

	13
	getgenerate
	N
	Return if the server is set to generate coins (mine) or not.

	14
	gethashespersec
	N
	Returns a recent hashes per second performance measurement while generating coins (mining).

	15
	getinfo
	Y
	Returns a JSON object containing various state info.

	16
	getmempoolinfo
	N
	Returns a JSON object containing mempool-related information.

	17
	getmininginfo
	N
	Returns a JSON object containing mining-related information.

	18
	getnettotals
	Y
	Returns a JSON object containing network traffic statistics.

	19
	getnetworkhashps
	Y
	Returns the estimated network hashes per second for the block heights provided by the parameters.

	20
	getpeerinfo
	N
	Returns information about each connected network peer as an array of json objects.

	21
	getrawmempool
	Y
	Returns an array of hashes for all of the transactions currently in the memory pool.

	22
	getrawtransaction
	Y
	Returns information about a transaction given its hash.

	23
	help
	Y
	Returns a list of all commands or help for a specified command.

	24
	ping
	N
	Queues a ping to be sent to each connected peer.

	25
	sendrawtransaction
	Y
	Submits the serialized, hex-encoded transaction to the local peer and relays it to the network.
btcd does not yet implement the allowhighfees parameter, so it has no effect

	26
	setgenerate
	N
	Set the server to generate coins (mine) or not.
NOTE: Since btcd does not have the wallet integrated to provide payment addresses, btcd must be configured via the --miningaddr option to provide which payment addresses to pay created blocks to for this RPC to function.

	27
	stop
	N
	Shutdown btcd.

	28
	submitblock
	Y
	Attempts to submit a new serialized, hex-encoded block to the network.

	29
	validateaddress
	Y
	Verifies the given address is valid. NOTE: Since btcd does not have a wallet integrated, btcd will only return whether the address is valid or not.

	30
	verifychain
	N
	Verifies the block chain database.

[bookmark: MethodDetails]5.2 Method Details

[bookmark: addnode]

	
	

	Method
	addnode

	Parameters
	1. peer (string, required) - ip address and port of the peer to operate on
2. command (string, required) - add to add a persistent peer, remove to remove a persistent peer, or onetry to try a single connection to a peer

	Description
	Attempts to add or remove a persistent peer.

	Returns
	Nothing

	Return to Overview

	

[bookmark: createrawtransaction]

	
	

	Method
	createrawtransaction

	Parameters
	1. transaction inputs (JSON array, required) - json array of json objects
[

 Code contribution guidelines

Code contribution guidelines

Developing cryptocurrencies is an exciting endeavor that touches a wide variety
of areas such as wire protocols, peer-to-peer networking, databases,
cryptography, language interpretation (transaction scripts), RPC, and
websockets. They also represent a radical shift to the current fiscal system
and as a result provide an opportunity to help reshape the entire financial
system. There are few projects that offer this level of diversity and impact
all in one code base.

However, as exciting as it is, one must keep in mind that cryptocurrencies
represent real money and introducing bugs and security vulnerabilities can have
far more dire consequences than in typical projects where having a small bug is
minimal by comparison. In the world of cryptocurrencies, even the smallest bug
in the wrong area can cost people a significant amount of money. For this
reason, the btcd suite has a formalized and rigorous development process which
is outlined on this page.

We highly encourage code contributions, however it is imperative that you adhere
to the guidelines established on this page.

Minimum Recommended Skillset

The following list is a set of core competencies that we recommend you possess
before you really start attempting to contribute code to the project. These are
not hard requirements as we will gladly accept code contributions as long as
they follow the guidelines set forth on this page. That said, if you don’t have
the following basic qualifications you will likely find it quite difficult to
contribute.

	A reasonable understanding of bitcoin at a high level (see the
Required Reading section for the original white paper)

	Experience in some type of C-like language

	An understanding of data structures and their performance implications

	Familiarity with unit testing

	Debugging experience

	Ability to understand not only the area you are making a change in, but also
the code your change relies on, and the code which relies on your changed code

Building on top of those core competencies, the recommended skill set largely
depends on the specific areas you are looking to contribute to. For example,
if you wish to contribute to the cryptography code, you should have a good
understanding of the various aspects involved with cryptography such as the
security and performance implications.

Required Reading

	Effective Go [http://golang.org/doc/effective_go.html] - The entire btcd
suite follows the guidelines in this document. For your code to be accepted,
it must follow the guidelines therein.

	Original Satoshi Whitepaper [http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CCkQFjAA&url=http%3A%2F%2Fbitcoin.org%2Fbitcoin.pdf&ei=os3VUuH8G4SlsASV74GoAg&usg=AFQjCNEipPLigou_1MfB7DQjXCNdlylrBg&sig2=FaHDuT5z36GMWDEnybDJLg&bvm=bv.59378465,d.b2I] - This is the white paper that started it all. Having a solid
foundation to build on will make the code much more comprehensible.

Development Practices

Developers are expected to work in their own trees and submit pull requests when
they feel their feature or bug fix is ready for integration into the master
branch.

Share Early, Share Often

We firmly believe in the share early, share often approach. The basic premise
of the approach is to announce your plans before you start work, and once
you have started working, craft your changes into a stream of small and easily
reviewable commits.

This approach has several benefits:

	Announcing your plans to work on a feature before you begin work avoids
duplicate work

	It permits discussions which can help you achieve your goals in a way that is
consistent with the existing architecture

	It minimizes the chances of you spending time and energy on a change that
might not fit with the consensus of the community or existing architecture and
potentially be rejected as a result

	Incremental development helps ensure you are on the right track with regards
to the rest of the community

	The quicker your changes are merged to master, the less time you will need to
spend rebasing and otherwise trying to keep up with the main code base

Testing

One of the major design goals of all core btcd packages is to aim for complete
test coverage. This is financial software so bugs and regressions can cost
people real money. For this reason every effort must be taken to ensure the
code is as accurate and bug-free as possible. Thorough testing is a good way to
help achieve that goal.

Unless a new feature you submit is completely trivial, it will probably be
rejected unless it is also accompanied by adequate test coverage for both
positive and negative conditions. That is to say, the tests must ensure your
code works correctly when it is fed correct data as well as incorrect data
(error paths).

Go provides an excellent test framework that makes writing test code and
checking coverage statistics straight forward. For more information about the
test coverage tools, see the golang cover blog post [http://blog.golang.org/cover].

A quick summary of test practices follows:

	All new code should be accompanied by tests that ensure the code behaves
correctly when given expected values, and, perhaps even more importantly, that
it handles errors gracefully

	When you fix a bug, it should be accompanied by tests which exercise the bug
to both prove it has been resolved and to prevent future regressions

Code Documentation and Commenting

	At a minimum every function must be commented with its intended purpose and
any assumptions that it makes

	Function comments must always begin with the name of the function per
Effective Go [http://golang.org/doc/effective_go.html]

	Function comments should be complete sentences since they allow a wide
variety of automated presentations such as godoc.org [https://godoc.org]

	The general rule of thumb is to look at it as if you were completely
unfamiliar with the code and ask yourself, would this give me enough
information to understand what this function does and how I’d probably want
to use it?

	Exported functions should also include detailed information the caller of the
function will likely need to know and/or understand:

WRONG

// convert a compact uint32 to big.Int
func CompactToBig(compact uint32) *big.Int {

RIGHT

// CompactToBig converts a compact representation of a whole number N to a
// big integer. The representation is similar to IEEE754 floating point
// numbers.
//
// Like IEEE754 floating point, there are three basic components: the sign,
// the exponent, and the mantissa. They are broken out as follows:
//
// * the most significant 8 bits represent the unsigned base 256 exponent
// * bit 23 (the 24th bit) represents the sign bit
// * the least significant 23 bits represent the mantissa
//
// ---
// | Exponent | Sign | Mantissa |
// ---
// | 8 bits [31-24] | 1 bit [23] | 23 bits [22-00] |
// ---
//
// The formula to calculate N is:
// N = (-1^sign) * mantissa * 256^(exponent-3)
//
// This compact form is only used in bitcoin to encode unsigned 256-bit numbers
// which represent difficulty targets, thus there really is not a need for a
// sign bit, but it is implemented here to stay consistent with bitcoind.
func CompactToBig(compact uint32) *big.Int {

	Comments in the body of the code are highly encouraged, but they should
explain the intention of the code as opposed to just calling out the
obvious

WRONG

// return err if amt is less than 5460
if amt < 5460 {
 return err
}

RIGHT

// Treat transactions with amounts less than the amount which is considered dust
// as non-standard.
if amt < 5460 {
 return err
}

NOTE: The above should really use a constant as opposed to a magic number,
but it was left as a magic number to show how much of a difference a good
comment can make.

Model Git Commit Messages

This project prefers to keep a clean commit history with well-formed commit
messages. This section illustrates a model commit message and provides a bit
of background for it. This content was originally created by Tim Pope and made
available on his website, however that website is no longer active, so it is
being provided here.

Here’s a model Git commit message:

Short (50 chars or less) summary of changes

More detailed explanatory text, if necessary. Wrap it to about 72
characters or so. In some contexts, the first line is treated as the
subject of an email and the rest of the text as the body. The blank
line separating the summary from the body is critical (unless you omit
the body entirely); tools like rebase can get confused if you run the
two together.

Write your commit message in the present tense: "Fix bug" and not "Fixed
bug." This convention matches up with commit messages generated by
commands like git merge and git revert.

Further paragraphs come after blank lines.

- Bullet points are okay, too
- Typically a hyphen or asterisk is used for the bullet, preceded by a
 single space, with blank lines in between, but conventions vary here
- Use a hanging indent

Prefix the summary with the subsystem/package when possible. Many other
projects make use of the code and this makes it easier for them to tell when
something they’re using has changed. Have a look at past
commits [https://github.com/btcsuite/btcd/commits/master] for examples of
commit messages.

Here are some of the reasons why wrapping your commit messages to 72 columns is
a good thing.

	git log doesn’t do any special special wrapping of the commit messages. With
the default pager of less -S, this means your paragraphs flow far off the edge
of the screen, making them difficult to read. On an 80 column terminal, if we
subtract 4 columns for the indent on the left and 4 more for symmetry on the
right, we’re left with 72 columns.

	git format-patch –stdout converts a series of commits to a series of emails,
using the messages for the message body. Good email netiquette dictates we
wrap our plain text emails such that there’s room for a few levels of nested
reply indicators without overflow in an 80 column terminal.

Code Approval Process

This section describes the code approval process that is used for code
contributions. This is how to get your changes into btcd.

Code Review

All code which is submitted will need to be reviewed before inclusion into the
master branch. This process is performed by the project maintainers and usually
other committers who are interested in the area you are working in as well.

Code Review Timeframe

The timeframe for a code review will vary greatly depending on factors such as
the number of other pull requests which need to be reviewed, the size and
complexity of the contribution, how well you followed the guidelines presented
on this page, and how easy it is for the reviewers to digest your commits. For
example, if you make one monolithic commit that makes sweeping changes to things
in multiple subsystems, it will obviously take much longer to review. You will
also likely be asked to split the commit into several smaller, and hence more
manageable, commits.

Keeping the above in mind, most small changes will be reviewed within a few
days, while large or far reaching changes may take weeks. This is a good reason
to stick with the Share Early, Share Often development practice
outlined above.

What is the review looking for?

The review is mainly ensuring the code follows the Development Practices
and Code Contribution Standards. However, there are a few other
checks which are generally performed as follows:

	The code is stable and has no stability or security concerns

	The code is properly using existing APIs and generally fits well into the
overall architecture

	The change is not something which is deemed inappropriate by community
consensus

Rework Code (if needed)

After the code review, the change will be accepted immediately if no issues are
found. If there are any concerns or questions, you will be provided with
feedback along with the next steps needed to get your contribution merged with
master. In certain cases the code reviewer(s) or interested committers may help
you rework the code, but generally you will simply be given feedback for you to
make the necessary changes.

This process will continue until the code is finally accepted.

Acceptance

Once your code is accepted, it will be integrated with the master branch.
Typically it will be rebased and fast-forward merged to master as we prefer to
keep a clean commit history over a tangled weave of merge commits. However,
regardless of the specific merge method used, the code will be integrated with
the master branch and the pull request will be closed.

Rejoice as you will now be listed as a contributor [https://github.com/btcsuite/btcd/graphs/contributors]!

Contribution Standards

Contribution Checklist

	[] All changes are Go version 1.3 compliant

	[] The code being submitted is commented according to the
Code Documentation and Commenting section

	[] For new code: Code is accompanied by tests which exercise both
the positive and negative (error paths) conditions (if applicable)

	[] For bug fixes: Code is accompanied by new tests which trigger
the bug being fixed to prevent regressions

	[] Any new logging statements use an appropriate subsystem and
logging level

	[] Code has been formatted with go fmt

	[] Running go test does not fail any tests

	[] Running go vet does not report any issues

	[] Running golint [https://github.com/golang/lint] does not
report any new issues that did not already exist

Licensing of Contributions

All contributions must be licensed with the
ISC license [https://github.com/btcsuite/btcd/blob/master/LICENSE]. This is
the same license as all of the code in the btcd suite.

 Contact

Contact

IRC

	irc.freenode.net, channel #btcd

Mailing Lists

	btcd: discussion of btcd and its packages.

	btcd-commits: readonly mail-out of source code changes.

Issue Tracker

The integrated github issue tracker [https://github.com/btcsuite/btcd/issues]
is used for this project.

 Index

Index

 btcd

btcd

[image: _images/btcd.png]Build Status [https://travis-ci.org/btcsuite/btcd]
[image: _images/license-ISC-blue.svg]ISC License [http://copyfree.org]
[image: _images/godoc-reference-blue.svg]GoDoc [http://godoc.org/github.com/btcsuite/btcd]

btcd is an alternative full node bitcoin implementation written in Go (golang).

This project is currently under active development and is in a Beta state. It
is extremely stable and has been in production use since October 2013.

It properly downloads, validates, and serves the block chain using the exact
rules (including consensus bugs) for block acceptance as Bitcoin Core. We have
taken great care to avoid btcd causing a fork to the block chain. It includes a
full block validation testing framework which contains all of the ‘official’
block acceptance tests (and some additional ones) that is run on every pull
request to help ensure it properly follows consensus. Also, it passes all of
the JSON test data in the Bitcoin Core code.

It also properly relays newly mined blocks, maintains a transaction pool, and
relays individual transactions that have not yet made it into a block. It
ensures all individual transactions admitted to the pool follow the rules
required by the block chain and also includes more strict checks which filter
transactions based on miner requirements (“standard” transactions).

One key difference between btcd and Bitcoin Core is that btcd does NOT include
wallet functionality and this was a very intentional design decision. See the
blog entry here [https://web.archive.org/web/20171125143919/https://blog.conformal.com/btcd-not-your-moms-bitcoin-daemon]
for more details. This means you can’t actually make or receive payments
directly with btcd. That functionality is provided by the
btcwallet [https://github.com/btcsuite/btcwallet] and
Paymetheus [https://github.com/btcsuite/Paymetheus] (Windows-only) projects
which are both under active development.

Documentation

Documentation is a work-in-progress. It is available at btcd.readthedocs.io [https://btcd.readthedocs.io/en/docu/].

Contents

	Installation

	Update

	Configuration

	Configuring TOR

	Docker

	Controlling

	Mining

	Wallet

	Developer resources

	JSON RPC API

	Code contribution guidelines

	Contact

License

btcd is licensed under the copyfree [http://copyfree.org] ISC License.

 Contents

Contents

	Installation

	Update

	Configuration

	Configuring TOR

	Controlling

	Mining

	Wallet

	Developer resources

	JSON RPC API

	Code contribution guidelines

	Contact

_static/up-pressed.png

_static/up.png

_images/btcd.png
“build passing

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 btcd

 		
 Installation

 		
 Requirements

 		
 GPG Verification Key

 		
 Windows Installation

 		
 Linux/BSD/MacOSX/POSIX Installation

 		
 Gentoo Linux Installation

 		
 Startup

 		
 Update

 		
 Configuration

 		
 Peer server listen interface

 		
 RPC server listen interface

 		
 Default ports

 		
 Using bootstrap.dat

 		
 What is bootstrap.dat?

 		
 What are the pros and cons of using bootstrap.dat?

 		
 Where do I get bootstrap.dat?

 		
 How do I know I can trust the bootstrap.dat I downloaded?

 		
 How do I use bootstrap.dat with btcd?

 		
 Configuring TOR

 		
 Client-only

 		
 Command line example

 		
 Config file example

 		
 Client-server via Tor hidden service

 		
 Command line example

 		
 Config file example

 		
 Bridge mode (not anonymous)

 		
 Command line example

 		
 Config file example

 		
 Tor stream isolation

 		
 Command line example

 		
 Config file example

 		
 Docker

 		
 Introduction

 		
 Docker volumes

 		
 Known error messages when starting the btcd container

 		
 Examples

 		
 Preamble

 		
 Full node without RPC port

 		
 Full node with RPC port

 		
 Full node with RPC port running on TESTNET

 		
 Controlling

 		
 Mining

 		
 Add the payment addresses with the miningaddr option

 		
 Add btcd’s RPC TLS certificate to system Certificate Authority list

 		
 Ubuntu

 		
 Set your mining software url to use https

 		
 Wallet

 		
 Developer resources

 		
 JSON RPC API

 		
 1. Overview

 		
 2. HTTP POST Versus Websockets

 		
 3. Authentication

 		
 4. Command-line Utility

 		
 5. Standard Methods

 		
 6. Extension Methods

 		
 7. Websocket Extension Methods (Websocket-specific)

 		
 8. Notifications (Websocket-specific)

 		
 9. Example Code

 		
 9.2. Example node.js Code

 		
 Code contribution guidelines

 		
 Minimum Recommended Skillset

 		
 Required Reading

 		
 Development Practices

 		
 Share Early, Share Often

 		
 Testing

 		
 Code Documentation and Commenting

 		
 Model Git Commit Messages

 		
 Code Approval Process

 		
 Code Review

 		
 Code Review Timeframe

 		
 What is the review looking for?

 		
 Rework Code (if needed)

 		
 Acceptance

 		
 Contribution Standards

 		
 Contribution Checklist

 		
 Licensing of Contributions

 		
 Contact

 		
 IRC

 		
 Mailing Lists

 		
 Issue Tracker

